DESIGN OF CROP PROGRESS MONITORING SYSTEM BASED ON SPATIAL WOFOST MODEL SIMULATION

Zhengwei YangUSDA National Agricultural Statistics Service

Zeqiang Chen, Genong Yu, Liping Di Center for Spatial Information Science and Systems George Mason University

OUTLINE

- Background
- Input Data
- Study Site
- Architecture
- Prototype Simulation Results
- Conclusion

RATIONAL

- Crop development and progress information is critical for agricultural production and food prices.
- NASS provides crop progress and condition reports in growing season by casual field observations and assessments.
 - These assessments are subjective, unreliable and not covered all counties nor systematically stratified by geographic location.
- Remote sensing based vegetation indices such as NDVI cannot accurately detect all crop development stages.
- Therefore, it is necessary to develop alternative methods to better monitor the crop progress.

WOFST MODEL

- One-dimensional (time scale only), mechanistic, with no geographic scale reference though could be site-specific.
 - Regional application relies on the selection of representative points, followed by spatial aggregation or interpolation (e.g., linked to a GIS).
- Growth driving processes: light interception and CO2 assimilation;
- Growth controlling process: Crop phenological development;
- Considers only ecological factors (Assume optimum management practices)
- Can be used to estimate crop production, indicate yield variability, evaluate effects of climate changes or soil fertility changes, and determine limiting biophysical factors.
- Crop models available: wheat, grain maize, barley, rice, sugar beet, potato, field bean, soybean, oilseed rape, and sunflower.

Phenology - Phenological Development and Model Stage (DVS)

- sowing
- Emergence DVS=0
- tiller formation
- floral initiation or double ridge appearance
- spikelet formation
- stem elongation
- o anthesis (flowering) DVS = 1
- grain set
- grain dehydratation (ripening)
- dead-ripe (maturity) DVS=2
- The DVS and the phenological stage can be calibrated statistically.

WHY IS SPATIAL WOFOST MODEL SIMULATION?

- Crop growth model is abstract of real world crop growth dynamics;
- Crop phenological development reflects crop growth process;
- There many crop growth models, such as EPIC, DSSAT, YIELD, LINTUL, SUCROS, ALAMANC, CROPSYST, ADEL, CENTURY, DNDC, and WOFOST. Each one has its own focus and limitations.
- WOFOST has open source code and has been successfully used for wheat, grain maize, barley, rice, sugar beet, potato, field bean, soybean, oilseed rape, and sunflower, etc. crop simulation;
- However, it is one-dimensional, mechanistic, and site-specific. Selecting representative points, followed by spatial aggregation or interpolation (e.g., linked to a GIS) for large scale regional or national application is difficult.
- Therefore, a spatial WOFOST model simulation based on GIS is necessary!

OBJECTIVES

- Investigate the feasibility of using WOFST crop model simulation results combined in-situ observation data for crop progress monitoring;
- Generalize point WOFST model spatially based on GIS framework.
- Design a web service based geospatial crop progress monitoring system.

INPUT DATA

- Model Inputs
 - Crop Parameters Crop management;
 - Weather Data rainfall, temperature, wind speed, global radiation, air humidity;
 - Soil Data soil moisture content at various suction levels, data on saturated and unsaturated water flow, and data on site-specific soil.
- Cropland Data Layer(CDL)
- Crop Mask Cultivated land cover data Layer

SOIL DATA- USDA NRCS' SOIL SURVEY DATA — WEB MAP ACCESS

USDA NRCS SOIL SURVEY DATA

- Soil survey data archived and distributed in Soil Survey Geographic (SSURGO) Database
- Only file downloads were available.
- Extra Soil productivity data map (100m)
- Publically available from USDA web site

WEATHER DATA

- IOWA weather data obtained from 13 lowa weather stations via a website (http://mesonet.agron.iastate.edu/agclimate/hist/dailyRequest.php).
- Parameters include:
 - High Temperature, Low Temperature, Average Wind speed,
 Daily Precipitation, Solar Radiation, and Evapotranspiration;
 - "vapour pressure" can be calculated from the parameter "Evapotranspiration".
- These weather data are scattered. They are to be interpolated to all pixels in State. The method first implemented is called the inverse weighted interpolation.
- Kriging method is considered to replace this method.

CROPLAND DATA LAYER (CDL)

■The Cropland Data Layer product is a raster-formatted, geo-referenced, crop specific, land cover product.

TOTAL CROP MAPPING ACCURACIES FOR HISTORIC CDLS RANGE FROM 85% TO 95% FOR THE MAJOR CROPS

DATA SOURCE: CROPSCAPE PORTAL

nassgeodata.gmu.edu/CropScape

STUDY AREA - IOWA STATE

REQUIREMENTS

- Automate the process of data acquisition, retrieving, processing and database update.
- Provide full geo-spatially covered crop progress monitoring based on crop growth model and simulation;
- Provide new capabilities of on-line geospatial crop progress information access, geospatial query and on-line analytics via interactive maps;
- Disseminate all data to the decision makers and users via nearreal time retrieval, processing and publishing over the web through standards-based geospatial web services
- Leave no burden to users
 - No client software development &installation
 - No special software tools needed for data visualization, geospatial query and online analytics
- Use industry standard compliant GIS technology.

SPATIAL WOFST MODEL SIMULATION DESIGN CONSIDERATIONS

- Using Geospatial Information Technology
 - OGC standard compliant web services are to be used;
 - Web geo-processing services and Web Process Service are to be used for data processing and manipulating;
 - The crop simulation results are to be presented and published with Web Map Service (WMS) for the purpose of sharing and interoperation over Web.
 - The final model simulation results is a visualized image accessed by an online portal with Web service technology.
- Using crop growth model for simulation
 - Considering: model inputs, components, simulation and result dissemination.
- Using a crop mask to focus on crop only.
- Designing data structure of the model inputs to be easy to manage and easy to use;
- Crop simulation will be pixel-based:
 - Each pixel represents a specific crop or other land cover type;
 - Model inputs are different for every pixel.
- Model input data:
 - Crop, weather, and soil data, model output data such as crop development stage, biomass, and crop yield;

ARCHITECTURE

SPATIAL WOFOST MODEL IMPLEMENTATION

- Input data are organized into different soil, weather, and crop management three groups.
- Soil data are extracted and reprocessed from NRCS SSURGO) Database. They are reformated into grid and resampled to the appropriate resolution.
- Weather data are interpolated into grid of the appropriate resolution.
- Optimal crop management practice is assumed; the cropland cover and crop type are extracted from CropMask and CDL.
- All data are organized in either GIS database or files;
- An original WOFOST model with its associated parameters is valid only a given pixel (grid).

Model Pixel (GRID) FOR SIMULATION

SIMULATION TEST

- The simulation of prototype spatial WOFOST model implementation was successfully tested.
- The simulation interval is day; the simulation runs for whole soybean growing season.
- The input soil data are static while the weather data are dynamic. Weather data change every day. The crop management parameters are assumed optimal, which maximize the crop production.
- Soybean crop development stage and yield are selected as outputs.

SIMULATION RESULTS - SOYBEAN DEVELOPMENT STAGE

SIMULATION RESULTS - SOYBEAN YIELD

CONCLUSION

- This paper proposed using a crop growth model, World Food Study (WOFOST) model to simulate the crop growth and generalize it spatially for a gridded crop progress monitoring.
- A design framework of the spatial WOFOST model simulation system is presented.
- Initial implementation has been prototyped with successful simulation results.
- The simulated weekly crop development stage (DVS) needs to be calibrated with ground truth data observed from the field

QUESTION?

THANK YOU!

CONTACT: ZHENGWEI.YANG@NASS.USDA.GOV