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ABSTRACT

A inethod of classification of digitized multispectral
imaces is dJdeveloped and experimentally evaluated on actual
earth resources data collected by aircraft and satellite.
The method is designed to exploit the characteristic
dependence between adjacent states of nature that is
neglected by the nmore conventional simple-symmetric decision
rule. Thus contextual information is incorporated into the
classification scheme. The principle reason for doing this
is to improve the accuracy of the <classification. For
zeneral types of dependence this would generally require
more computation per resolution element than the
simple-symmetric classifier. But when the dependence occurs

"redundance", the elements can be classified

in the form of
collectively, in groups, thereby reducing the number of
classifications required. Thus a potential exists for
increased, rather than decreased, efficiency.

rasically, the method can be thought of as an image

partitioning tfansformation' that delineates (extracts) the

statistically homogeneous groups (samples) of elements and a



sample classifier that classifies them. Various
possibilities are considered for both operations.

The main result is that 2 combination of the two is
found which consistently provided the lowest error rates,
rivaling those obtained when ground observational data was
used to dJdelineate the samples manually. The relative
efficiency of this method depends tlargely on the complexity
of the classification task. For relatively complex
classification, the time saved by sampie classification more
than coinpensates for the extra time required for
nartitioning. DBut for‘relatively simple classification the
simple=symmetric classifier is faster. Of course in the
latter case, efficiency 1is not as great a consideration
since the total CPU time involved is much less than in the

former case.



CHAPTER 1
INTRODUCTION

The general objective of thi; thesis is to advance the
state of the art of pattern recognition as it is applied in
remote sensing technology. This -chapter opens with a
Jdiscussion of pattern recognition and remote sensing systems
that leads up to the specific problem under investigation.
In the process much of the prevalent terminology s
introduced. Other work that is related to this probhlem is

discussed in Section 1.3.

1.1 Pattern Recognition Systems

Man's riost abundant source of information about a scene
is the radiant electromagnetic energy which emanates from
it. The information 1is embodied in the spatial, spectral,
and temporal variations (patterns) of the radiance. The
reneral process of extracting information from patterns
(r;diance or otherwise) 1Is known as pattern recognition.
The most common form of pattern recognition is
“"classification", the assignment of an observed pattern to
one of severa} prespecified categories (classes). This

requires a certain degree of experience; i.e. the

recognition system must know the possible classes and have
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some sort of unique characterization for each one.
Typically this experience is "learned" from representative
"training" patterns (or sets of patterns) that are supplied
as references for each class. In the simplest case, each
set of patterns is a complete characterization of the class
it represents. Then classification is a straightforward
matter of comparison, More generally, a statistical
characterization might be the only adequate approach, and
the training patterns imight be wused to estimate statistical
quantities. Classification then becomes a problem in
statistical decision theory.

Of course it s not always possible to prespecify the
categories that a pattern might belong to. This 1is often
true in scene analysis, where the number of possibilities
can be enormous. Then pattern recognition can take the form
of "“description". In general, pattern recognition can
involve beoth classification and description. A complex
scene composed of relatively simple objects is often
described by classifying the objects and recording their
relative positions and orientations in the scene. This
description might be considered the final result, or it
micht in turn be used to classify the scene itself.

A1l systems that extract information from a scene
consist of a data collection system and a data processor.
The purpose of the data collection systém is to reduce the
scene to a manageable number of measurements (features)

without losing the desired information. Further reduction
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(feature selection) is often possible in the processor. The
choice of features obviously depends upon the information
that is desired, and conversely the information that can be
extracted <depends upon the choice of features. Most
collection systems are similar in many ways to the human
eye, which forms features by "sampling'" the spatial,
spectral, and temporal dimensions, thereby converting a
scene into series of electrical pulses. Spatial sampling
can be accomplished ‘by’forming an image of the scene on an
array of detectors (electrical or chemical) or by scanning
the imagze with an electrical detector. The resolution
element of such a system is the projection of the detector
back through the optical system onto the scene. It is
commonly called a “pixel", short for picture element. The
overall system resolution depends on both the pixel size and
the interval Dbetween samples, which are normally about
equal.

Spectral sampling is accomplished by measuring the
radiance of each resolution element with detectors
(channels) that are sensitive to different spectral bands.
A prism, grating, or interference filter is often used to
separate the radiant energy spectrally before detection.
Temporal sampling is accomplished merely by taking spatial
and spectral samples at discrete times.

Depending on the type of information that is desired,
one can emphasize or de-emphastze a particular dimension by

sampling it relatively many or relatively few times. A
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single black-and-white photograph, for example, emphasizes
spatial information since it is created by sampling only
once spectrally and once temporally. A color photograph
contains three spectral samples and thus emphasizes both
spatial and spectral information. The extent to which a
pattern is sampled falls under the category of "measurement
complexity'". Under-sampling results in loss of information,
but over-sampling results in an excess of data to process.
Technically, the data dimensionally increases faster than
its intrinsic dimensionality.

"Data dimensionalityﬂ refers to the dimension of the
easurement or observation space, in which a sampled pattern
can be considered an observation of a multi-dimensional
random variable. The probability density of this random
variable is a function of N variables (dimensions), where N
is the number of measurements. The "intrinsic"
dimensionality of a random variable (X) is the minimum
dimension that another random variable (Y) can have if X is
uniquely related to Y. Thus it is the minimum number of
measurements that could be wused to convey the same
information as X if the relationship were known.
Over-sampling increases the data dimensionality, but the
individual measurements tend to be more highly correlated
causing the information conveyed per measurement to
decrease.

The information that can be extracted from an image is

also limited by the sophistication of the processor which
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imust handle the data. Just as the necessary measurement
complexity depends on the information being sought, so does
the iethod of processing. The human mind is often an
extremely sood processor, particularly when the information
is of primarily a spatial nature. For this purpose the data
is presented in visual image form, which is known as an
"imasce-oriented" processing system. By contrast, in a
"nunmerically-oriented" system the decision-making element is
a computef, and the visual image plays little or no part.
Advantages of the computerized approach are its high load
(volume) capacity, comparatively low cost under high load,

and capacity to handle high measurement complexity.

1.2 Remote Sensing of Farth's Resources

An important subject before the engineering and
scientific community at the present time is the processing
of scenes which represent tracts of the earth's surface as
viewed from above. A typical scene consists primarily of
regular and/or irregular regions arranged 1in a patchwork
manner and each containing one class of surface cover type.
These homogeneous regions are the "objects" in the scene. A
basic processing gzoal is to locate and classify the objects
and produce a description of the scene in terms of tabulated
results and/or a "type-map". As in other image processing
applications, the locations and spatial features (e.z. size,
shape, orientation) of objects are revealed by changes in

average spectral properties that occur at boundaries. But
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unlike most other applications, the spatial features of an
object often have only a weak relationship to its class.
Research has shown, however, that many classes can be
distinguished reasonably well on the basis of their spectral
features, using statistical pattern classification
techniques. Current research is directed toward use of
temporal features as well, but not in this investigation.
OQur interest is in the numerically-oriented system
approach to processing these scenes. The input to the
system is in the form of digitized wmulti-spectral scanner
(MSS) data stored on magnetic tape. A typical
multi-spectral scanner samples the spectral dimension and
one spatial dimension. The second spatial dimension s

nrovided by the motion of the platform which carries the

scanner over the region of interest, generating a
raster-type scan. The temporal dimension s provided by
rescanning the region at different times.

Computer classification of MSS data is typically done
by applying a "“simple symmetric" decision rule to each
nixel, This means that each pixel is classified
individually on the basis of its spectral measurements

alone. A basic premise of this technique is that the

objects of interest are Jlarge compared to the size of a
pixel. Otherwise a 1large proportion of pixels would be
composites of two or more classes, making statistical
pattern classification unreliable; i.e. the prespecified

categories would be inadequate to describe the actual states
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of nature. (For later reference we shall call this "Premise
A".) Since the sampling interval is usually comparable to
the pixel size (to preserve system resolution), it follows
that each object is represented by an array of pixels. This
suggests a statistical dependence befween consecutive states
of nature, which the simple symmetric classifier fails to
exploit. To reflect this property, we shall refer to simple
symnetric classification as "“no-memory" classification.

One method for dealing with dependent states is to
apply the principles of compound decision theory or
sequential compound decision theory. Abend |1]| points out
that a sequential procedure can be implemented relatively
efficiently when the states form a low-order Markov chain.
However the prospect is considerably less attractive when
they form a Markov mesh, which 1is a more suitable model for
two-dimensional scenes. Furthermore, estimation of the
state transition probabilities could be another significant
obstacle to implementation of such a2 procedure. A short
appendix on the compound decision approach is included in
this thesis.

The compound decision formulation is a powerful
approach for handling very general types of dependence.
This suggests that perhaps by tailoring an approach mnore
directly to the problem at hand, one can obtain similar
results with considerable simplification. A distinctive

characteristic of the spatial dependence in MSS data is

redundance; i.e. the probability of transition
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from state i to state j fs much greater if j=i than if j#i,
because the sampling interval is small compared to the size
of an object. This suggests the use of an Yimage
partitioning" transformation to delineate the arrays of
statistically similar pixels before classifying them. Since
each homogeneous array represents a statistical "sample" (a
set of observations from a common population), a '"sample
classifier" could then be used to classify the objects. In
this way, the classification of each pixel in the sample is
a result of the spectral properties of its neighbors as well
as its own. Thus its "context" in the scene is wused to
provide better classification. The acronym ECHO (extraction
and classification of homogeneous objects) designates this
general approach.

A characteristic of both no-memory and compound
decision techniques 1is that the number of classifications
which must be performed 1is much larger than the actual
number of objects in the scene. When each classification
requires a large amount of computation, even the no-memory
classifier can be relatively slow. An ECHO technique would
substantially reduce the number of classifications,
resulting in a potential increase in speed (decrease in
cost). Whether or not this potential is realized depends on
the efficiency of the partitioning operation.

The goal of the current investigation is to further the
development of the ECHO concept. In particular, various

processing options are devised, implemented, and tested on a
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wide variety of data sets. |Input parameters are varied to
determine their effect, and performance comparisons are made

using no-memory classification as a norm.

1.3 Related Work

The recent literature contains numerous references to
imagze partitioning algorithms. Robertson |2| divides them
into two main categories. "Boundary seeking'" algorithms
characteristically attempt to exploit object contrast.
These techniques includg local gradient |3,4], template
matching 150 two-dimensional function fitting |61,
clustering 7 and cradients estimated from
variable-sized neighborhoods |8|. Two of these have bheen
implemented with digitized multispectral imagery.

Anuta |4], investigated & multivariate extension of a
two-dimensional gradient operator. The gradient operator of
a unispectral image maps each pixel into a number which
reflects the average pecsitive difference between that pixel
and its neighbors. The multivariate operator sums these
numbers over all spectral features for each pixel. Since
the differences are generally larger for boundary pixels
than for non-boundary pixels, thresholding this sum (for
each pixel) at the "proper" level provides a boundary
enhanced version of the original image. This technique is
relatively fast, but it has several serious problems.

Sirsk, la s inherently noisy, which s typical of

differentiation techniques. It is also very sensitive to
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the threshold level used. Furthermore the boundaries
derived by this technique often fail to close upon
themselves. For example, a boundary 1line may bLecome
discontinuous or fade out completely, leaving the objects
ambiguously defined. In special cases where the object
shape is restricted |3,9|, the true boundaries can sometimes
ve deduced, but in zeneral they cannot. This may not be a
serious drawback for applications such as image
registration, but closed boundaries are necessary for sample
classification. This particular problem is common to all
the boundary seeking algorithms mentioned above,

Wacker |7] developed an algorithm for MSS data which
performs a cluster analysis (unsupervised classification) of
a small region of the image and then scans the result for
the oresence of a boundary. The estimated boundary
structure for the entire image 1is obtained simply by taking
the union of the boundaries found in all such regions. This
is a inuch more time-consuming process, but it is less noisy
and less sensitive to input parameters. 0f course it
suffers from the same open boundary prob]ém as the other
boundary seeking algorithms.

The other category of image partitioning algorithms can
be called "object seeking" algorithms, which
characteristically exploit the internal reg&larity
(homogeneity) of the objects. As the name implies, an
object seeking algorithm always produces well=-defined

samples (and thus closed boundaries as well), There are two
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opposite approaches to object seeking, which we shall call
conjunctive and disjunctive. A conjunctive algorithm begins
with a very fine partition and simplifies it by
progressively inerging adjacent elements togzether that are
found to be similar according to certain statistical
criteria [10,11}]. A disjunctive algorithm begins with a
very simple partition and subdivides it until each element
sapisfies a criterion of homogeneity. For example,
Nobertson's algorithm |2,12| is based on the premise that if
a region contains a boundary, splitting the region
arbitrarily will usually produce two subregions with
significantly different statistical characteristics.

Early work in the application of sample classification
to MSS data was reported by Huang |13]. His imethod of
"opolling'" requires classification of the individual pixels
in the sample and is thus relatively inefficient. Wacker
and Landgrebe |14] investigated the "minimum distance
approach" using parametric and non-parametric methods. BRoth
studies relied on manual definition of the object
boundaries, based on actual surface (ground) observations,
to locate the samples that were classified.

: We combined PRodd's conjunctive partitioning algorithm
with a minimum distance sample classifier and observed an
improvement In classification accu;acy over conventional
no-memory classification, but processing time was increased
|15]. CGupta and Wintz 16| added a test of second order

statistics to Rodd's first order test, but obtained
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essentially the same results as the first order test ot
rreater cost in processing time. Robertson 2, 12|
implemented a disjunctive partitioning algorithm with the
same minimum distance classifier, He obtained about the
same classification accuracy as conventional no-memory
classification with an order of magnitude increase in
processing time. This points to one essential difference
between the disjunctive and conjunctive approaches. With a
disjunctive approach, every time a region is divided new
sample statistics inust be calculated from raw data. With a
conjunctive approach, every time two regions are merged the
statistics for the resultant region can be obtained mnerely
by "pooling" the statistics of the original two subregions.
This results in a significant computational advantage for
the conjunctive approach.

The current investigation is devoted to further
cevelopnent of the conjunctive approach. A much faster
sample classifier is proposed and tested. his problem is
discussed in Chapter 2. New statistical criteria are
proposed as well as new object seeking logic in Chapter 3,
Extensive test results appear in Chapter L4, comparing
cifferent algorithms against each other and against
conventional no-memory classification, The main result is
that the stability, classification accuracy, and speed of
the ECHO technique have been greatly improved. Compared to
the no-memory classifier, consistently lower error rates are

observed using an ECHO approach, and for a reasonably
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complex classification its efficiency exceeds that of the

conventional method.
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CHAPTER 2

CLASSIFICATION

The motivation for object extraction is to enable
faster and more accurate classification of the pixels within
the object. In Section 2.3 we discuss the classification
algorithms that accomplish this. They are based on a
certain wodel of the objects to be <classified, which s

described next.

2.1 Statistical Model of Multi-Spectral Scanner Data

As we have indicated, a typical scene consists
primarily of objects whose boundaries form a partition of
the scene. The partition is generally unknown at the
outset, but we can at least assume that it 1is relatively
coarse compared to the size of a pixel. Each object in the
scene bhelongs to some class. For representation purposes,
each class is divided into one or more "“subclasses'". They
are also called ?sﬁectra] classes" (as opposed to
“"informational classesf) to indicate that they can Dle
uistinguished spectra’ly although it imay not be useful to do
so. Let uij denote the jth subclass of the ith class. Let

F danote an object (represented by an array of pixels), and

let X denote a pixel in some object. (The underbar is used
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to indicate 2 g-dimensional variable (x_eRq ), wﬁere g
henceforth denotes the number of spectral channels.) Then
Fewij denotes the event that F belongs to the subclass wij'
The a-priori probability of this event is denoted by

P(Fewij ). In accordance with Section 1.2, we Iignore any
statistical dependence of this event on the spatial features
of F. |7 there were a strong, known dependence then it
could be used to help classify F, but that 1Iis not our
intention. A consequence of this assumption is that
P(iewij) = P(Fewij), and we denote both quantities simply by
P(”ij)'

The nixels within a given object of a given spectral
class are completely characterized by their class-
conditional, joint, probability distribution function. For
no=-memory classification, such a complete model is
unnecessary; only the marginal distribution of each pixel is
required. Furthermore, the pixels within a single object
are usually assumed to have a common (i.e. stationary)
marzinal distribution, which is due to the homogeneity of
the types of objects typically encountered in remote sensing
anplications. Although the ,data is digitized, it s
convenient to represent this g-variate distribution by 3
probability density function (pdf)

cont inuous-parameter

i = eW..) or
which, for subclass wij, is denoted by p(X=x1X ¥

i bar indicates condi tional
simply by p(;lwij). (The vertical

probability).
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Two pixels inl spatial proximity to one-another are
unconditionally correlated, with the degree of correlation
decreasing as the distance between them increases. luch of
this correlation is attributable to the effect of dependent

states, discussed in Section 1.2, which is the effect we

wish to exploit. For simplicity we shall iznore other
sources of correlation. Thus we assume that pixels within
the same object are class-conditionally independent; i.e.

cach object is a "simple" sample from one of the spectral
class populations. Then the joint pdf of the pixels can be
expressed as just the product of their warginal pdf's. This
approximation leads to fast, effective (though suboptimal)
processing algorithms, but theoretical bpredictions based on
this simplified model should be interpreted cautiously.
This aspect of modeling 1is discussed at greater depth in
Appendix A.

It is possible to express other statistical
characteristics in terms' of the ones above. If W; denotes
the ith class, then

P(XeH;) = PCU Xel ) =% PCW ;) 2.1.1
J J

where U Jdenotes the union of events. The pdf of X,

conditional on this event, is given by

plxlWy) = _1 2 p(xIW;;)PCW;;) v
J

This equation defines the representation of a class in terms

of its subclasses. The unconditional pdf can be written in
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two ways:

p(x) = T plulid; IPH; ) = B plxIW; )P 2.1.3
[ 1

Within this framework, all that is required to complete
the statistical model for a given scene (or class of scenes)
is to specify the spectral classes that are present and
assign an a=-priori probability and conditional pdf to each.
Of course the true distributions are assigned by nature, and
the accuracy of the model depends on how well we can
estimate them. Fortunately we are wusually able to obtain
estimates of the class-conditional pdf's based on training

samples taken directly from the data set. For this we
usually rely on actual surface (sround) observations or

manual photo=interpretation to locate areas representing

nach class of cover-type. For the purpose of classifier

desisn, we assume that the size of each sample s

sufficiently large that the error in the corresponding

Ilstribution estimate s negligible., The subject of

training is discussed further in Chapter 4.

The distribution estimates can be parametric or
non-paranetric in reneral. It has been found that the
ulti-variate normal (MVN) distribution is a reasonable

wodel for 1SS data |171: i.e. olx|l;;) = N(ity3,Cy50x), where

-1 - % 2.1 .4
MCox) = (12mC] expx=t) 'C (x=M)))

I
—

N(

(tlote that (x-M)' denotes the transpose of vector (x=M). )

it follows that if ﬁawij, .
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')y = ¢

E = Xe=biy o 2
(X LIJ)(; iy Q:;
where F( ) denotes statistical expectation. Thus ﬂij and
Cij are the mean vector and covariance matrix of the
subclass distribution. Note that in order to obtain a

parametric estimate of a MVN distribution, it 1is only
necessary to estimate its first and second order moments.

This is the -approach that we will use.

2.2 Mo=l'emory Classification

In order to introduce certain concepts that will be
useful Jlater, we now review some comnon techniques of
no-memory classification including (in one case) a

discussion of a bound on the probability of error.

2.2.1 Maximum A Posteriori Probability (MAP) Strateg

Let X be a pixel, as before. Under the hypothesis that

!

X W, the pdf of X is p(1=51§_ewi ), which Is given by
cquation 2.1.2. Assuming that this function is accurately
known, the hypothesis is Ysimple'. The soal of

classification is to devise a strategy for choosing cone of
the possible classes (hypotheses) based on x, the observed
value of X; i.e. we must specify a function, W(x), which
maps x into the set of possible classes. We can maximize
the probability of a correct decision by always choosing the
class, W;, which has the maximum a posteriori probability,
P(XeW; 1 X=x). To show this we merely write the probability of

a correct decision in the following form:
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P(L e W(X)) =J'P(g e W(x)I1X=x)p(X=x) dx 2.2.1.1
X eRq
It i's apparent that this guantity is maximized with respect
to the Jdecision function by adopting the MAP decision rule.
To implement this strategy we use the mixed form of Payes
rule to write
P(X=x|X ¢ wi)P(wi)

P(X € H;IK=L) = 202002
p(X=x)

The denominator is independent of i, so we need only to seek
the | which maximizes the numerator. In other words, for a
~iven observation, x, W(x) .is chosen such that

p(X=x|X e W(X)IP(W(x)) = max p(X=x|X e W;IP(W;) 2:2:1 .3
i

This result can also be obtained as a special case of Bayes

Jecision rule for ninimum risk when a "zero=one" 105S

function is assumed (i.e. when the risk equals the
probability of error). Thus it is often referred to as

"gayes classifier'.

9.2.2 Maximum Likelihood (ML) Strategy

Wwhen all the classes are equiprobable, the MAP decision

rule reduces to

plX=x1X € MW(x)) .= max n(X=x|X € wi) 1 e g &

i
fis a function of i, the statistic p(X=x|Xe W;) is called
the likelihood function, so this decision rule is called the

maximum likelihood strategy.
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The ML strategy is usually a reasonable approach cven
when the classes are not equiprobable. In particular, the
’AP strategy tends to discriminate against classes whose
a-priori probability is low; i.e. it encourages a relatively
large conditional probability of error when a '"rare" class
occurs in order to wminimize the overall error probability.
Thus when one is interested jn classifying the less abundant
classes .'(as wef] as the more abundant classes) with
reasonable accuracy, the MAP strategy may not be as
desirable'as one which makes more errors but distributes
them more equitably 'among the classes. With the ML
strategy, the conditional probability of error when the ith

class occurs dependé only on the degree of statistical

“separability" (or "distance") between class i and the other
classes. It is independent of the a-priori probability of
class i.

2.2.3 Generalized Maximum Likelihood (GML) Strateg

Often the a-priori subclass probabilities are unknown.
Then the hypothesis that X € Wi is a composite hypothesis;
i.e. p(g!wi) = Z:Aij p(ilwij) where the coefficients are
unknown. Of :o:rse we know that Aij > 0 and Z:Aij = 1. A
procedure that has been found to be useful ithhis situation
is to form iaximum 1likelihood estimates of the unknown
parameters under each hypothesis. Then the unknowns are

replaced by their estimated values, and a hypothesis is

selected by the ML strategy, We will refer to this
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procedure as the gengeralized maximum likelihood strategy.
The resultant decision rule can be simply expressed in the
following form:

n(xlV(x)) = max max p(ilwij) 2.2.3.1
i J

where V(x) maps x into the set of spectral <classes. Then
t'(x) is simply defined toc be the informational <c¢lass
containing V(x).

Wle note that the CML strategy is equivalent to a ML
strategy over the set of spectral classes. Thus when all
spectral classes are equiprobable, it maximizes the

nrobability of classifying the observation into the correct

one.

2.2.4 Probability of EZrror For The CML Strategy

Let Vi Cenote the igh spectral class, and let E be the
JoR I

event that X is classified into the wrong spectral class.

Then

PCE) = X PCEIX e Vj)P(V;) 2.2.4.1
J

If E;; fis the event that V; procduces a larger likelihood

statistic than Vj, then

PCEIVS) = PO U Ejivy) & & PUEG;IV)) AW

|
i#]) i#)
Thus it is of some interest to investigate the pairwise

error probabilities.

Let Fi;(T) = PCR;;(X) >TIXeV;) = P(Lj;(X) >In(T)[XeV;),

il
where Rj;(X) and L;;(X) are the random variables:
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2.2.u
p(XIV;)
Ri.(ﬁ) = = likelihood ratio 2.2.4.3
’ p(X]V;)
Then P(EIJIVJ) = Fij(l). Unfortunately the conditional

distribution functions of Rij(l) and Lij(l) are not usually
explicitly available. But, if we can find the moment
zenerating function, ¢;j(u), corresponding to the
conditional distribution of Lij(L).given XEV 5, then we can
bound Fij(T) as follows:

Fis(T) < T Tg550u), 0 ¢ 2.2.4.4
Furthermore

Fei () < Y lg (u), ug 1

ij
This is known as the Chernoff bound ]18]}.

By definition:

¢ij(u) = E(exp(uLij(L))IL > Vj) 2.2:4.5
ilhen the subclasses are MVN, the expectation can be

explicitly evaluated |18|. The result is:

$..(u) =
]

10 1% e 1 .
2 exp(-u(l-u)(ﬁi-ﬁ.)'(uC.+(1-u)C.) (H.=11.))
J J i I J

Iqu+(1-u)Cil

2.,2.4,6
Substituting into 2.2.4.4 provides the desired bound. In
particular, for u = .5 we have:
Fis(M < 6 GNT 2.2.4.7

lie note in passing that =-1n ¢ij('5) is simply the Bhatta-

charyya "distance" between subclasses V; and Vj.
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Combining equations 2.2.4,1, 2.2.4.2, and 2.2.4.7 zives

an expression for a bound on P(E):
PCE . e

) ?P(VJ)§¢U(.5) 2.2.5.8

i#]

By dropping the terms for which V: and V; are in  the same
class, this becomes a bound on the total probability of

RO,

2.3 Sample Classification

For the purposes of this section we can assume that the
partition of the scene is known and we simply want to
classify the objects. (In Chapter 3 we discuss conjunctive
partitioning algorithms for actually estimating the
partition.) We shall treat each object separately, thus

ignoring any contextual information resulting from spatial

relationships of objects. So we observe 3 set (sample) of

g-dimensional random variables, X = (ll,...,in), from a
cominon population, and our goal is to classify them.
2.3.1 Minimum Distance (MD) Strategy
- A Structured Approach to Classification
A structured approach is one in which the basic form of

the processor is simply assumed, perhaps leaving certain

parameters or options to the discretion of the user, A
reasonable procedure is to choose some characteristic that
differs from class to class, measure it for the sample to be
classified, and select the class whose characteristic most

closely matches this observation. Under our assumption of
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simple samples, each class is completely characterized by a
xnown g-dimensional pdf. Therefore, in MD classification,
the n data vectors are used to estimate the pdf of the
population, and the <class is selected whose pdf is closest
to this estimate as measured by some appropriately defined
"distance measure' on the set of density functions. !deally
one would like to choose the density estimator and distance
rieasure in some optimum manner, but in practice the best
suidelines are nrovided by experimental investigations |14].
Note that a possible drawback of the MD strategy is that the
sample size (n) must not Le too small to obtain meaningful
density estimates.

When spatial correlation is introduced into the niodel
(Appendix A), each class is only partially characterized by
a simple g-dimensional pdf. Although perhaps not as
effective as a higher dimensional pdf would be, it is still
a reasonable and valid characteristic for distinguishing
between classes. |In fact if the spatial correlation s
class-invariant (such as that induced by the scanner), the
g-dimensional ndf might be just as effective as the higher

dimensional one.

2.3.2 M.,A.P., and M.L. Sample Classification

In contrast to the MD strategy, the MAP strategy is a
completely non-structured: approach. The <decision rule is
determined solely by the criterion of minimum error rate

with no a-priori restrictions. Of course a gsreater degree
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of statistical information is also required (the a-priori
class probabilities). We can obtain the MAP decision rule by
direct extension of 2.2,1.3 if we consider X as a3
an-dimensional random variable to he classified. Let x be
the set of variates (51,...,An) and the event X=x be defined

as the joint event lizﬁ'

P i=1,...,n. Then, wunder the

hypothesis Xewi, the pdf of X is

1 2 POW. Ip(X=x|W..) AN
PCW.) ] H i

L}

p(X=x|Hi)

i 11
1 PCY. ) p(X_=x_[W..)
PCW.) o= MM

The MAP decision rule can be stated as follows:

P{X=x|UW(x))P(W(x)) = max D(X=xlwi)P(Ni) 25 o202
i

There is no minimum sample size required to implement this
strategy. For n=1 it simply reduces to MAP no-memory
classification (2.2.1.3).

Note that we have represented the joint pdf of a sample
in terms of the marginal pdf of one pixel. When spatial
correlation is present, this is no longer a fully adequate
representation. But as in the case of MD classification, it
still provides a useful statistic for distinguishing classes
while avoiding the complexities of more rigorous
representations.

So far we have tacitly assumed that the decision rule
st assign the same class to all the pixels in the sample.
ith this type of strategy, either all the pixels are

classified correctly cr all are misclassified. Thus the MAP
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decision rule maximizes the average ﬁumber of times that all
the nixels in X are classified correctly. Rut performance
is senerally measured by just the average number of pixels
in X that are classified correctly each time. We can show
that the MAP decision rule maximizes this criterion also.
iny decision rule that we adopt must assign a class to ii
for any event X=x. We denote this mappning by Wi(x). Let
Z(+) Dbe an indicator function, i.e. a zero-one random
variable which assumes the value 1 if and only if the event
specified in the arguement actually occurs. The number of

elements correctly classified in the sample is given by the

random variable

[\

Z(X, ¢W., (X)) 73255
i=1 v
n n
ECN) = . 2 E(Z(X; €W, (X))) = 3 P(X, e W, (X))
-=1 L -=1

M:s

IPQ@i € W (x)1X=x)p(X=x) dx

i=1
xt:an
The integration implied here is a gn-dimensional one. Note
that the event 14 ewi(x) is equivalent to X ¢ Wi(X)’ so all
terms of this summation are identical, with the possible
exception of the decision function. Thus the decision
function which maximizes one term also maximizes the others.
This confirms that the obptimum decision rule assigns the
same class to all the elements of the field. Denoting this

decision function by W(x), we have
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E(N) = rWIP(X € W(x)[X=x)p(X=x) dx 2:352 3k
This, of course, is maximized by the MAP strategy (2.3.2.2).
The ML strategy follows directly from the MAP strategy
by dropping the a=priori probabilities. The result is
p{X=x|W(x)) = max D(X=X|Wi) T 5 P S
!
2.3.3 G.M.L. Sample Classification
We can obtain the GML decision rule by direct extension
of 2.2.3.1., The result is
n(X=x]V(x)) = max mnax p(X=x|Wij) = max p(X=lei)
| : | 2a3:.5.1
/e can also bound the probability of error for classifying

simple samples. The analysis of Section 2.2.4 carries over

directly when X is replaced by X and the moment generating

funetion is recomputed as follows:

R:.(X) = Rs 2 (2 2.5.5v2
;5 (0 ml;[l P (%)
N
X) = X
L5 OO ”2 Ly ()

This is a sun of independent, identically distributed random

variables. Thus

F(exp(uLyy CRIREY;)

n

II E(exp(uLij(gm))lﬁme vj) 2,3.3.3

m=

n
(E(exp(uLiJ(l))lisVJ))

|

(475"

Cquation 2.2.4.7 becomes

n
Fis(T) = PCRy;(X) > TiXeVyd < (47550 VT 2.3.3.4
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It is @ property of mément senerating functions that

¢ij(u) < ¢;j(0) = 1, so this bound is an exponentially
decreasing function of n when ¢ij(‘5) # 1, or equivalently
vvhen the Phattacharyya distance is non-zero. Thus the
nrobability of error for the GML' ' sample classification
strategy is bounded by ba sum of exponentially decreasing
functions of the sample size.

To illustrate fow powerful this bound can be we now
consider a simple example. Suppose that the ith and jth
spectral class densities are as depicted in Fig. 2.3.3.1.
The inean vectors are equal, which results in a high degree
of "overlap". Therefore the DRhattacharyya distance is only
t.11, and ¢ij('5) =/0.8 = 0.8944, The actual conditional
error rate, Fij(l)' for no-memory classification (n=1), is
50%, which represents very poor performance. This implies
that a "polling" <classifier also has a 509% error rate
recardless of the sample size. PBut Figure 2.3.3.2 shows how
the GML performance improves as the sample size increases.
For a sample of just 4O observations the error rate is
practically insignificant. Although we probability cannot
expect such dramatic performance in practice (due to the
idealizations of our model), this still provides a strong
inotivation for our effort to apply sanple classification to

MSS data.

2.3.4 Maximum Likelihood vs. Minimum Distance

Let X = (X3,...,X,) dDe a simple sample from a MVN
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population, and define the statistics

X. |
X, 2.3.4.1

. R . . .
The maximum likelihood estimates of the mean vector and

covariance matrix are:

B=5:/n 2 Bl 2
n
C=1l 2 (X =X =1 = S./n -y p
I ET | ' ~2

The corresponding density estimate is given by equation

2:1.4,
Two nopular distance measures are the Bhattacharyya

distance and the divergence. If Wi is a class with density

'gi;i) then the Bhattacharyya distance between this and

N(M,C;x) is given by

=1
ET(CHC) () ) 23,83

3= .25 ( In J(c+ci)/21% + (n
ICT IC, |

-

and the divergence can be efficiently calculatecd from

D= .5 er(Cleclaceee, (U1, (H-E ")) - 29 2.3.4.4
Computationally, D is faster than B, requiring about 2q(g+2)
rmultiplications nlus 1 matrix inversion per class for each
(§1,§2) pair classified. In addition to this, B requires a
determinant and a logarithm. (This does not include
gquantities such as lgil which can be computed once and

saved,) ‘Yowever P appears to provide an advantage in terms

of classification accuracy, based on experimental evidence
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3.0
|14). And its direct relationship to the Chernoff bound
sives D some intuitive appeal as well.

In order for the ML strategy to be computationally
competitive with D and B, the likelihood function iwust be

nxpressed in terms of §1 and §2 as follows:

N
pCxiw.) = JI mi,,ci:X.) 2.3.4.5
j=1 ’
— ~ n - v I ] =1 1 -%
j=1
In p(X|4;) =
n -1 -1 -1
-.5(n Inj2nC;l +,Za<lj'9i Xj -2L'Cq X5 +Mi ey L))
J=
The quadratic term vields
n _ n _ - n
Y x.teily = Poerceilxx ) = ereit Y Xk
j=1 J J j=1 o J J (o j=1 |
SO
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